6 åç®ã®é ä¿¡ã§ãã ä»åã®ã€ããªã·ã¯ãDoorDash ã®æ€çŽ¢ã·ã¹ãã å·æ°ã®èšäºã§ãã
Search
Solr 9.0.0 ããªãªãŒã¹ãããŸããã Elasticsearch ãšåããã Lucene 9 ã® ANN ããµããŒãããããšã«ãããè¿åæ¢çŽ¢æ©èœã远å ãããã
Apache Solr 9.0.0 ããªãªãŒã¹ãããŸããïŒ - KandaSearch
ãªãªãŒã¹æã®æ¥æ¬èªèš³ãå ¬éãããŠããŸããã
Also in 9.0 is a brand new Solr Ref Guide, completely re-organized and built on @antoraproject which gives us a dozen features we’ve wanted like search. Which is probably the one you really wanted too: https://solr.apache.org/guide/solr/latest/ > https://twitter.com/childerelda/status/1524854759022379017
Solr 9 ã®ãªãªãŒã¹ã«äŒŽããApache Solr Reference Guide ãåç·šæãããŸãããæ€çŽ¢æ©èœããµã€ãã«æèŒããããšèšåãããŠããã®ã§äŸ¿å©ã«ãªã£ãã®ã§ã¯?
On-device Text-to-Image Search with TensorFlow Lite Searcher Library â The TensorFlow Blog
TensorFlow Lite ã䜿ã£ãŠããã€ã¹äžã§ã®èšèªã¯ãšãªããç»åæ€çŽ¢ãè¡ã£ã解説èšäºã ããã€ã¹äžã§ãæ€çŽ¢ã¯ãšãªã«å¯Ÿå¿ããç»åã®åã蟌ã¿ãã¯ãã«ã ScaNN(Google ãéçºããè¿äŒŒè¿åæ¢çŽ¢ã®ã¢ã«ãŽãªãºã )ã§è¿äŒŒè¿åãè¡ããTop N æã®ç»åã®ã¡ã¿ããŒã¿ãæ€çŽ¢ãããã€ãŸããããã€ã¹äžã«ã¯ç»åã®ã¡ã¿ããŒã¿ã®ã¿ä¿æããŠãããç»åèªäœã¯äŸãã°ãããçµç±ã§è¡šç€ºãããããšãå¯èœã èšäºå ã§ã¯ãç»åãããã€ã¹ã«ä¿åããŠãããããªèšè¿°ã¯ãªãã£ãã®ã§ãç»åã®åã蟌ã¿ç©ºéã®ã¿ä¿æããŠããæš¡æ§ã Pixel 6 ã§ã®å®æ©ãã¹ãã§ã¯ãåæ€çŽ¢ã¯ãšãªã¯ 6m sec ã§å®çµããŠããããããã¹ãŠããã€ã¹äžã§å®çµããã ãã¯ãã鬌ã®éãã
åããŠç¥ã£ãããTensorFlow Lite Model Maker ãšããã©ã€ãã©ãªã䜿ãããšã§ãTensorFlow Lite ã®åŠç¿ãç°¡çŽ åã§ãããããã
é¢é£æ€çŽ¢ã¯ãŒãã®ç²ŸåºŠãå°çæ å ±ã«ããããŒãœãã©ã€ãºããŠã¿ãã話ã å°çã«äŸåããã¯ãšãªã«ãããŠææ§æ§åé¿ã®ããã«æå¹ã ããå°çæ å ±ããšã« QAC ã®ã€ã³ããã¯ã¹ãäœæããã®å€§å€ããã 倧ãŸãã«åããŠãå°æ¹ããš(é¢è¥¿ã»é¢æ±ãšã?)ã«ã€ã³ããã¯ã¹ãäœæããã®ã ããã…?
å®éšçµæã§ãCTR ãã¹ããŒããã©ã³ãš PC ã ãšçµæãé¡èã«åãããŠãããæ€çŽ¢çµæã®äžéšãšäžéšã§ PC ã ãšäžéšã CTR ãäžãã£ãŠããŠé¢çœãã£ãã èå¯ããããšãããã©ãããŸã§å·®ç°ãã§ãã®ã¯ãªããæãã€ããªãã£ã.. ããã Web æ€çŽ¢ãªãã§ã¯ã®åãçµã¿ããããã課é¡ã§ããã
OpenSearchCon 2022 · OpenSearch
2022.09.21 ã« OpenSearch(Elasticsearch ãããŒã¹ã« AWS äž»äœã§éçºããŠããæ€çŽ¢ãšã³ãžã³)ã®ã«ã³ãã¡ã¬ã³ã¹ãéå¬äºå®ã OpenSearch ã¯è¿äŒŒè¿åæ¢çŽ¢1ã§ã nmslib ã faiss ãå©çšããŠããæ¬å ã® Elasticsearch ãšéãæ¹åæ§ã«å€åããŠãããããªã®ã§ãä»åŸã«æåŸ ããŠããã
3 Changes to Expand DoorDashâs Product Search Beyond Delivery
ããŒãããªããªãŒãŠãã³ãŒã³ã® DoorDash ãæ€çŽ¢ã·ã¹ãã ã§æ©èœãå·æ°ãã 3 ã€ã®ç¹ã解説ããèšäºã DoorDash ã®æè¡ããã°ã¯ãæ©æ¢°åŠç¿2ãæ€çŽ¢ã·ã¹ãã 3ãªã©ãèªåã®èå³ããåéã§è¯è³ªãªèšäºãç®çœæŒããªã®ã§æ¯åæŽæ°ã楜ãã¿ã«ããŠããŸãã
ããªãé¢çœãã£ãã®ã§æ·±å ãããŠæèš³ããŸããã
3 Changes to Expand DoorDashâs Product Search Beyond Delivery èŠç¹ãŸãšã
åœåã¯ããŒãããªããªãŒã®ã¿ã ã£ãã DoorDash ã®æ€çŽ¢æ©èœã¯ãæçã®ã¡ãã¥ãŒæ€çŽ¢ã®ããã«äœæãããã ããžãã¹æ¡å€§ã«äŒŽããæçã®ã¡ãã¥ãŒä»¥å€ã«ããã¹ãŒããŒã®é£æãé貚ãã¢ã«ã³ãŒã«ããããããŒããªã©æ§ã ãªçš®é¡ã®è£œåãæ€çŽ¢å¯èœã«ããå¿ èŠããã£ãã
- ãŸããããŒã¿ã¬ã€ã€ãŒã®èŠç¹ã§ã¯ãååã®ã¡ãã¥ãŒä»¥å€ã«æ€çŽ¢æ©èœãæ¡å€§ããéã«ãã¹ãŒããŒã®é£æãªã©ã¯ SKU ã®åäœãšããŠéåžžã«ç²åºŠã现ãããé åãæ¡å€§ãããã³ã«ãã®é åã«åãããããŒã¿ãã€ã³ããã¯ã¹ããå¿ èŠãããã
- ãŸããæ°ããé åã«ããžãã¹ãæ¡å€§ããéã«ã¯ãèšå€§ãªæ°ã® SKU ã«ã©ãã«ä»ãããå¿ èŠãããããã¹ã±ãŒã«ãããããã«æ©æ¢°åŠç¿ããŒã¹ã®ææ³ã§ã©ããªã³ã°ãã¹ã±ãŒã«ãããã
ãããïŒã€ã®èª²é¡ã解決ããããã«æ°ããæ€çŽ¢ã·ã¹ãã ã®ã€ã³ãã©ãå·æ°ãã Query undestanding, Document Understanding ã«ãã£ãŠæ€çŽ¢çµæã®ã©ã³ãã³ã°ãæ¹åããã
å ·äœçã«äœããã£ãã®ã?
- Rebuilding search infrastructure for new challenges
active/nextgen indexing
: ãŸã DoorDash ã®äºæ¥åœ¢æ ãšããŠãé«éã«ã€ã³ããã¯ã¹ãæŽæ°ããå¿ èŠãããã(NOTE:
ãªã³ã©ã€ã³äœãããªãŒããŒããéã«ãæ€çŽ¢ã€ã³ããã¯ã¹ãæŽæ°ãããŠããªãã£ãã®ã§ãæ€çŽ¢çµæã«ã¯è¡šç€ºãããŠãããã©å£²ãåããŠããããªäœéšã¯é¿ãããã§ããã)federated search
: 飿åãæçãã¢ã«ã³ãŒã«ãªã©è€æ°é åã®æ€çŽ¢çµæãæ··ããnew search storage
: äžèšãå¯èœã«ããæ€çŽ¢ã€ã³ãã©
- Improving query and document understanding
new taxonomies
: Query & Document understanding ã®ããã«ãæ©æ¢°åŠç¿ãçšãã補åã®ã©ããªã³ã°ã·ã¹ãã ãéçº
- Learning-to-rank
learning-to-rank & evaluation system
: Rerank ã®ä»çµã¿ãšãæ€çŽ¢çµæã®è©äŸ¡ãå¯èœã«ãããã¬ãŒã ã¯ãŒã¯ãéçºã(ã¢ãã«ã®è©³çްã¯åŸæ¥ããŒã¿ãµã€ãšã³ã¹ããŒã ãããã°èšäºãæžããŠããããšã®ããš)
Rebuilding search infrastructure for new challenges
Implementing active/nextgen indexing
以å DoorDash ã¯Building Faster Indexing with Apache Kafka and Elasticsearch - DoorDash Engineering Blog ã®èšäºã§ç޹ä»ãããããã«ãApache Kafka ã䜿ã£ãŠ Elasticsaerch ãžã®ã€ã³ããã·ã³ã°é床ã
- åºèã®ã«ã¿ãã°å šäœã backfill ããæéã 1 é±éãã 6.5 æéã«ççž®
- ååã®ã«ã¿ãã°å šäœã backfill ããæéã 2 é±éãã 6.5 æéã«ççž®
- åã€ã³ããã¯ã¹(re-index)ã®æéã 1 é±éãã 2 æéã«ççž®
ãšåçã«æ¹åããããããããæŽã«ã€ã³ããã·ã³ã°é床ãåäžãããã
å ·äœçãªã¢ãããŒããšããŠåã€ã³ããã¯ã¹ããããŠé次ã€ã³ããã·ã³ã°ãæ¡çšããããšã§ãåªå 床ã®é«ãããŒã¿ããªã¢ã«ã¿ã€ã ã«æ€çŽ¢ãšã³ãžã³ã«åæ ããããšãã§ããããã«ãªã£ãã
Building a federated search
æçãé貚ãé£åãªã©è€æ°é åã®æ€çŽ¢çµæãæ··ãã federated saerch ãå°å
¥ã
NOTE
: ã€ã¡ãŒãžãšããŠã¯ãåé åããšã«æ€çŽ¢ã·ã¹ãã ã®ãã€ã¯ããµãŒãã¹ãäœæããŠããããã®æ€çŽ¢çµæãæ··ãããã€ã¯ããµãŒãã¹ãéçºããæãã§ãã
åæã¯ã¬ã¹ãã©ã³(æç)æ€çŽ¢ã®ã¿ã«å¯Ÿå¿ããæ€çŽ¢ãšã³ãžã³ã ã£ãããæ°ã·ã¹ãã ã§ã¯æ°Žå¹³ã«åé åã®æ€çŽ¢ãè¡ãæ··ããããšãã§ããããã«ãªã£ãã®ã§ã察å¿é 忡倧ã®éã«ãã€ã³ããã¯ã¹ãªã©ã®æ¢åã®ã³ãŒããæžãæã察å¿ããå¿ èŠããªããªã£ãã ãŸããæ€çŽ¢ãšã©ã³ãã³ã°ãæ°Žå¹³ã«åé¢ãããããšã§ãåé åã«ç¹åããŠæè»ã«æ€çŽ¢æ§èœãåäžãããããšãã§ããã
ãŸãã federated saerch ã®å®çŸã«ããäŸãã°äžã€ã®é åã®æ€çŽ¢ã·ã¹ãã ãããŠã³ãããšããŠãæ€çŽ¢ã·ã¹ãã å šäœãããŠã³ããããšã¯é¿ããããšãå¯èœã«ãªã£ãã
New search storage engine
Elasticsearch ãæ¡çšããŠããããæ§ã ãªèª²é¡ãèŠããŠããã®ã§æ°ããæ€çŽ¢ãšã³ãžã³ã®æ€èšãéå§ããã Apache Lucene ãããŒã¹ã«ããŠæ€çŽ¢ã·ã¹ãã ãæ§ç¯ããã å©ç¹ãšããŠãé床åäžã®ä»ã«ããLucene 9 ãã䜿çšå¯èœãª è¿äŒŒè¿åæ¢çŽ¢ãé åçãªç¹ã ã£ãã
NOTE
: yelp ã® nrtsaerch 4ãããã ããæ¢åã® Elasticsaerch ã Solr ãããã«ããã¯ã«ãªããšèªäœæ€çŽ¢ãšã³ãžã³ãäœãå§ããã®ãã£ãããããã
Improving query and document understanding
- æäœæ¥ã§ã®ã©ããªã³ã°ãè¡ããæäœæ¥ã¯ã¹ã±ãŒã©ãã«ã§ã¯ãªãããé«éã«ä»®èª¬ãç«èšŒããŠãæ°çŸèŠæš¡ã®ããŒã¿ã»ãããäœæããã
- ããã»ã¹ãæšæºåãããåŸã¯ããªãã¬ãŒã·ã§ã³ããŒã ãå€éšããŒãããŒãšé£æºããŠãæ°åèŠæš¡ã®ã©ããªã³ã°ãè¡ãã
- åéããæ°åã®ããŒã¿ãåºã«æ©æ¢°åŠç¿ã¢ãã«ãæ§ç¯ããŠããã®ã¢ãã«ã䜿ã£ãŠã©ããªã³ã°ãã¹ã±ãŒã«ãããã
- äžèšã®ããŒã¿ã«å¯ŸããŠã宿çãªå質確èªãè¡ããã©ããªã³ã°ã®å質確èªã¯ããã€ã¢ã¹ã®æé€ãã¢ãã«ã®ç²ŸåºŠåäžã«äžå¯æ¬
Using human annotations to create labels
ã¢ãããŒã·ã§ã³ã®åæ£ãæå°åããããã«ãã¢ãããŒã·ã§ã³ããã»ã¹ãææžåããã¬ã€ãã©ã€ã³äœæã¯ãšãŠãéèŠã§ããã Google æ€çŽ¢ãå ¬éããŠããæ€çŽ¢å質ã®çŽ æŽãããã¬ã€ãã©ã€ã³ãããããåæ§ã« DoorDash ãã¢ãããŒã·ã§ã³ã¬ã€ãã©ã€ã³ãäœæããã
ã ãããã DoorDash ã®ãã¹ãŠã®åŸæ¥å¡ããã«ã¿ã€ã ã§ããã¥ã¢ã«ã«åã£ãŠã¢ãããŒã·ã§ã³ãããšããŠãæ°åäžèŠæš¡ã®ã¢ãããŒã·ã§ã³ã¿ã¹ã¯ãçµããããããšã¯ã§ããªãã 人éã«ããã¢ãããŒã·ã§ã³ãã¹ã±ãŒã«ãããããã«ã¯å€éšã®å°éã®ãã³ããŒã«é ŒããããåŸãªãã Amazon Mechanical Turk ããGoogle Cloud AI Labeling Service, Scale.AI, Appen ãªã©å€ãã®ã¢ãããŒã·ã§ã³ããžãã¹ãååšããŠããã
åºæ¬çã«ã¢ãããŒã·ã§ã³ã¿ã¹ã¯ã¯ãäžäººã®ã¢ãããŒã¿ãŒã®å€æãä¿¡é Œããããšã¯ã§ããªãã ãã€ã¢ã¹é€å»ã®ããã«ããã䜿ãããææ³ãšããŠã¯å€æ°æ±ºãåãå ¥ããææ³ãããã é©åãªç²ŸåºŠã®ã¬ãã«ãŸã§åŒãäžããã« 3-4 人ããããã¯ãã以äžã®äººæ°ã§åäžã®ã¢ãããŒã·ã§ã³ã¿ã¹ã¯ãè¡ãå¿ èŠãããã ãŸããè¯è³ªãªã¬ã€ãã©ã€ã³ã¯ã¢ãããŒã·ã§ã³ã®å質ãé床ã®åäžã«ãå¯äžããã
ãã³ããŒã«äŸé ŒåŸãã¢ãããŒã·ã§ã³ããŒã¿ã»ãããäœæãããåŸã«ããæã ã¯ããŒã¿ã»ããã«å¯Ÿããç£æ»ãè¡ãå¿ èŠãããã (æ©æ¢°åŠç¿ã®ã·ã¹ãã ã§ããããš)ä»ã®ã·ã¹ãã ãšåæ§ã«ãå質ä¿èšŒã¯éèŠã§ãã
NOTE
: åæããç¡ããæ©æ¢°åŠç¿ã ãã仿¹ãªãããã ãšããã®å
ã«ã¯è¡ããªãã®ã§åºæ¥åŸãéã
(å€çš®å€æ§ãªç¶æ³ãããã®ã§ãããã«å¿ãããã¹ããªè¡åãæã)ã®åãçµã¿ã§å質ä¿èšŒãè¡ãå¿
èŠãããã
ã¢ãããŒã·ã§ã³ããŒã¿ã»ãããžç£æ»ãè¡ã£ãéã«ãé¢çœãããŒããèŠã€ãã£ãã
- ããããã®ãã³ããŒã¯ç¹å®ã®å°åã®ã¢ãããŒã¿ãŒã§æ§æãããŠãããæåã®å·®ç°ã«ãã£ãŠèª€ã£ã倿ãçºçããŠãã
- ç¹å®ã®ãã³ããŒã¯ä»ã®ãã³ããŒãšæ¯ã¹ãŠãã¢ãããŒã¿ãŒãèšç·ŽãããŠãããã¢ãããŒã·ã§ã³çµæããšãŠãè¯è³ªã ã£ã
- äžéšã®çš®é¡ã®ã©ãã«ã¯ã¢ãããŒã·ã§ã³ã¬ã€ãã©ã€ã³ã«ææ§æ§ãå€ãããã
- ã¢ãããŒã·ã§ã³ã¿ã¹ã¯ã®è€éããéå°è©äŸ¡ããå Žåããã³ããŒã¯ã¢ãããŒã·ã§ã³ã¿ã¹ã¯ã®ç«ã¡äžããšåŠçã«é·æéå¿ èŠãšããã
Using natural language processing to enrich query context
ã¯ãšãªã«å¯Ÿããåè©ã®ã¢ãããŒã·ã§ã³ãè¡ãããšã§ãã¯ãšãªã®èšèªçãªæ§é ãçè§£ãã§ããã
äŸãã°ã ãred pizzaããšããã¯ãšãªã«å¯ŸããŠãããŒã¹ãè¡ã[JJ NN]ãšããã¢ãããŒã·ã§ã³ãè¡ãã
JJ
ã¯åœ¢å®¹è©ã§ãNN
ã¯åè©ãæããŠããã
çµæãšããŠããã®ã¯ãšãªã¯åœ¢å®¹è©ãåè©ã修食ããŠãããšããããšããããã
æ€çŽ¢ã®éã«ããred pizzaããšããåèªãå®å
šäžèŽã§ååšããªãã£ãå Žåãç·©åãè¡ããpizzaãã®ã¿ã®åèªã§æ€çŽ¢ãè¡ãããšãå¯èœã«ãªãã(äžè¬çã«ã¯ãšãªæ¡åŒµãšåŒã°ããæè¡)
NOTE
: ãã® POS ã®ã¢ãããŒã·ã§ã³ã§ããããªãã®ã¯ãã¯ãšãªèªäœæ£ããè±èªã§ã¯ãªã誀æ€ãŸã¿ãã®è±èªããããã POS ã¢ãããŒã·ã§ã³ãå¿
èŠåäºãªã®ããªãšæã£ãããã? å°éåéã§ã¯ãªãã®ã§çŽ äººççºæ³ã ãã圢æ
çŽ è§£æãå¿
èŠãªã誀æ€ããããªããã° POS ã¢ãããŒã·ã§ã³ãããšãåè©ã¯ãã¹ãŠææ¡ã§ããã?
ã ããåŸè¿°ã® Spacy ã§
NLP libraries involve far more than POS tagging
ãšæžããŠããã®ã§ãã¢ãããŒã·ã§ã³èªäœã¯å¿ èŠãªã¿ã¹ã¯ãªãã ãšçè§£ã
POS ã¿ã®ã³ã°èªäœã¯ Spacy ã䜿ã£ãŠããã POS ã¿ã®ã³ã°ã®ãµãŒãã³ã°ã ããæ€çŽ¢æã«ãªã³ã©ã€ã³(ãªã¢ã«ã¿ã€ã )ã§ã®ãµãŒãã³ã°ãå¿ èŠãªã®ã§é床åäžã®ããã«ä»¥äžã®ãããªéžæè¢ãããã
- ãªãã©ã€ã³ã§èšç®ããã¯ãšãªã®åè©ã®ãã¢ã Redis ãªã©ã®ã€ã³ã¡ã¢ãª DB ã«æ ŒçŽããŠã«ãã¯ã¢ããããŒãã«ãæ§ç¯ããŠæšè«ãè¡ããªãããã«ããã(人æ°ã®ããã¯ãšãªã®ã¿ã«çŠç¹ãããŠããã€ã«ã¯ãšãª(é »åºŠã®äœãã¯ãšãª)ã¯ã«ãŒãã£ããªãã£ãççºããã®ã§ DB ã«ã¯æ ŒçŽããªã)
- Spacy ã䜿ããã« JVM ã§åã NLP ã©ã€ãã©ãªã䜿ã£ãŠãµãŒãã³ã°ãã
- Roblox ã®ããã«ãã¥ãŒãã³ã°ã極ããããšã§ããã©ã³ã¹ãã©ãŒããŒã¢ãã«ã§ããªã³ã©ã€ã³æ¯æ¥ 10 åèŠæš¡ã®æšè«ãå®çŸããããš5ãå¯èœ
NOTE
: éžæè¢ã¯è²ã
ãšãããŸããšããã€ã€ãäœãæ¡çšãããã¯æ¬¡ã®èšäºã«æåŸ
ããŠããšæžããŠãããå人çã«ã¯ DB ã§ã«ãã¯ã¢ããããŒãã«äœ¿ãã®ãåæã ãšäžçªè¯ããã
Learning-to-rank
DoorDash ã® ã©ã³ãã³ã°ã¢ã«ãŽãªãºã ã®å€é·
- Heuristic Ranker (BM25+ åºèã®äººæ°åºŠ)
- LTR:Pointwise
- LTR + Personalization
åæã® LTR ã¢ãã«ããããã€æã«ããªã³ã©ã€ã³ã§ã®æ€çŽ¢è©äŸ¡ã®ãã¬ãŒã ã¯ãŒã¯ã瀟å ã§è°è«ããŠæ¹åæ§ãåºããŠãã£ãã ããžãã¹ææšãšæ å ±æ€çŽ¢ææšã®ïŒã€ã®ã«ããŽãªã®ææšãæã€
- ããžãã¹ææš: æ€çŽ¢ã®ã³ã³ããŒãžã§ã³çãCTRãfirst click rank position ãªã©ã¯ North star ææš
- æ å ±æ€çŽ¢ææš: mean-reciprical rank, nDCG
å®åžžçã«ãŽãŒã«ãã³ããŒã¿ãäœæããä»çµã¿ãäœæãã¢ãããŒã¿ãŒãé 眮ããŠãé¢é£æ§ã®ã¬ãŒãã£ã³ã°ãè¡ããææ°ã®ãŽãŒã«ãã³ããŒã¿ãåžžã«äœæã§ããããã«ããŠããã
Heuristic Ranker ãã pointwise LTR ã«åãæ¿ããããšã§ãæ€çŽ¢é¢ä¿ã®ãã¹ãŠã®ææšã倧ããåäžã
äžæ¹ã§ pointwise LTR ã®å°å ¥ã«ã¯ 6 ã¶æä»¥äžãè²»ããããã
ãã®åŸãLTR + Personalization ã«ãã£ãŠãæŽã«ææšãåäžã DoorDash ã§ã¯ãïŒã€ã®æç¢ºãªæ€çŽ¢ã®äœ¿ç𿹿³ãååšãã
- ãã©ã³ãæ€çŽ¢: ã¬ã¹ãã©ã³ã®ååãæ€çŽ¢ããã匷ãæå³ãæã£ãæ€çŽ¢
- éãã©ã³ãæ€çŽ¢: æçãé£åãç®çã«ããæ€çŽ¢ãæ€çŽ¢æå³ã¯å人çãªæèã«åŒ·ãäŸå
LTR + Personalization ã«ããæ¹åã§ã¯ãéãã©ã³ãæ€çŽ¢ã倧ããæ¹åãããã(ãããŠæ€çŽ¢ããªã¥ãŒã ã§ãããªãã®éšåãå ãã)
Mercari ML&Search Talk #3 ~MLOps & Platform~ - YouTube
- Build ML platform using Open-Source (English)
- ã¡ã«ã«ãª JP å ã®æ©æ¢°åŠç¿åºç€ã«ã€ããŠèªã£ãŠãããŠããŸããç©æ¥µçã«å€éšçºä¿¡ãããŠããªãã£ããšæãã®ã§æ°ã«ãªãæ¹ã¯åŸ¡èЧãã ããã
- How search system evolves in mercari (Japanese)
- ã¡ã«ã«ãªã®æ€çŽ¢åºç€ã®å€é·ã«ã€ã㊠| ã¡ã«ã«ãªãšã³ãžãã¢ãªã³ã°ãåºã«ããè¬æŒã«ãªã£ãŠããããã®èšäºãé¢çœããšæã£ã人ã¯ãã²èŠãŸããã! èè ã® @shinpei ããã¯ã¹ããŒãªãŒãèªãã®ãäžæãã®ã§ãèªåã¯èšäºãèªãã§ããæäžã« 2 åç¬ãããŠããããŸããã
- Mercari Lens beta - product development with WebAssembly à AI (Japanese)
- @tkat0 ããã«ãããWebAssembly ã䜿ã£ãæ©æ¢°åŠç¿ãããã¯ãéçºã®è£åŽã®ç޹ä»ãæ¯åæåããã®ã¯ãã¯ã©ã€ã¢ã³ãåšãã®éçºãèªåãã¡ã§ãã£ãŠããããã客ããŸã®äœéšã«çŽé¢ããéçºã«ãªããã€ã³ã¿ãã¥ãŒãéãã€ã€æ¹åããŠããã®ã¯ãããé£ãããšæããã©ããã®å§¿å¢ãè¯ããªããšæã£ãŠãããããã¯ãšã³ãã ãã«ãªããã¡ãªæ©æ¢°åŠç¿é©çšã§ãããã¯ã©ã€ã¢ã³ãã®èŠçŽ ãèæ ®ããªããšãããªããªãã®ã§ãEdge ã®ééå³ã§ããã
æ¬æžã¯ãæ¢çŽ¢çæ€çŽ¢ãŸã§èæ ®ããªãããæ€çŽ¢ã·ã¹ãã ããšæ¥ã æ ŒéããŠããå®åå®¶ 6 åã«ããå®åå®¶ã®ããã®ã¬ã€ãããã¯ã§ããæ€çŽ¢ãšã³ãžã³ãæ¯ããããŒã¿æ§é ãšã¢ã«ãŽãªãºã ã䜿ãåæã®ãã UIãæ€çŽ¢ã·ã¹ãã ãå®éçã«è©äŸ¡ãã€ã€æ¹åããææ³ãåã ã®ãŠãŒã¶ãŒã®ããŒãºã«å¯ãæ·»ã£ãæ€çŽ¢çµæãè¿ãããã®å·¥å€«ãªã©ãªã©ããããæ€çŽ¢ã·ã¹ãã ãã€ãããããã«äœãã©ã®ããã«å§ãããããã®ããäŒããçŸ éç€ãšãªã£ãŠããŸãã
mocobeta/building-search-system-book: ãä»äºã§ã¯ãããæ€çŽ¢ã·ã¹ãã ããšããæ¬ããã£ããªãïŒãšããæ³åã®ç£ç©ã§ã -> ãæ€çŽ¢ã·ã¹ãã â å®åè ã®ããã®éçºæ¹åã¬ã€ãããã¯ãã«ãªããŸãã 1 幎ååã®æ§æ³ãããã€ãã«æžç±ã«ãªã£ããšããè¯ãã話ã ãã®è©±é¡ã Twitter ã§è©±é¡ã«ãªã£ãéã«ããªããžããªã®ååšã¯ç¥ã£ãã®ã§ãããcommit history ãèŠãŠã¿ããšãã¡ããã¡ãã @mocobeta ãããæŽæ°ãããŠããã¿ããã§ãã®å€é·ãã¿ãã®ãæžç±å®æãŸã§ã®è¿œäœéšã§ããŠé¢çœãã(web æ¥èšã¿ããã§è¯ãã§ããã ð)
çºå£²æ¥ã«å³è³Œå ¥ãããŠããã ããŸãããããŸã ãã£ãããšèªããŠããªãã®ã§ç²ŸèªåŸã«ææ³èšäºãæžãããŠããã ããããªãšæã£ãŠããŸãã
10X ã®æ€çŽ¢ã 10x ããã - 10X Product Blog
ãããã¹ãŒããŒã®ãã©ãããã©ãŒã ã§ãã Stailer ã®æ€çŽ¢ã·ã¹ãã ãæ¹åããã話ã çŸç¶ã®æ€çŽ¢ã·ã¹ãã ãçè§£ããã°ããããã©ãŒãã³ã¹ããã«ããã¯ãçºèŠããŠè§£æ¶ãããšãããææ¬ã®ãããªã¹ããŒãªãŒã§é¢çœãã£ãã§ãã å®éã«é床ã 10 åãCPU 䜿çšçã 68%åæžãšãããã«ã€ææãã§ãŠããŸããã ãŸããæ¢åã®ã·ã¹ãã èšèšãèŠçŽãããšã§è²»çšã 8 å²åæžãšçŽ æŽãããã
ããšåé ã®
ãšããã§ãæ€çŽ¢ã€ã³ãã©ã®æ¹åãã§ãããšããããšã¯ãå 人ãã¡ãæ€çŽ¢æ©èœãäœããPMF ããŠãµãŒãã¹ãå©çšãããããã«ãªã£ããããã§ããæè¬ããŠæ¹åããŸãããã
ã®èšèããªã¹ãã¯ãã«æºã¡ãŠããŠå人çã«ãšãŠã奜ããªã®ãšã
æåŸã®
æ€çŽ¢éåºŠã®æ¹åããã€ã³ãã©è² è·å¯Ÿçã¯æ¥œãããæ¹åç¹ã¯ç¡ããªããªãã®ã§æ°žé ã«ã§ããŸããããããããããã¡ã®ç®çã¯ãããæ€çŽ¢æ©èœãã客ããŸã«æäŸããããšã§ããããšãå¿ããŠã¯ãªããŸããã
ãæ€çŽ¢ãéããå ã®äœéšæ¹åã念é ã«ãããŠããŠçŽ æŽããããªãã§ãã?
èè ã® @metalunk ããã¯ãäžç·ã«åãçµãã§ããããšã³ãžãã¢ãåéäžãªã®ã§ãã«ãžã¥ã¢ã«é¢è«å€§æè¿6ãšã®ããšã§ãã
ææ³ãªã©
Twitter ã§ #searchengineeringnewsletter ã®ããã·ã¥ã¿ã°ã§ã€ã¶ãããŠããã ããã Google ãã©ãŒã ã§ã®ææ³æçš¿ããåŸ ã¡ããŠãããŸãã
æçš¿ã®å±ã¿ã«ãããŠããã ããŸãã
Search Engineering Newsletter ã®è³Œèªæ¹æ³
é ä¿¡èšäºãèç©ããã RSSãäœæããŠããŸãã
ãŸããä»ãŸã§ã®é ä¿¡èšäºäžèЧããã¡ãããé²èЧã§ããŸãã
äœè«
ååãšåãããèšäºãæžãæéã®äžéãæ±ºããéçšã«ããŠã¿ããšãé »åºŠãé«ãŸãããŸãåã£ãŠãããšæãã DoorDash ã®èšäºãé¢çœãããŠæèš³ããŠãããä»ã®èšäºãæžãæéãæ¶ããŠããŸã£ãã ã ãã骚倪ãªèšäºãå ¬éããŠããã DoorDash ã«æè¬ã
ãŸããYuki ãããšããæ¹ãããbuymeacoffee ã§ â ã 3 æ¯ãè²·ã£ãŠããã ã7ãéåžžã«ãã³ã·ã§ã³ãäžãããŸããã
Things Not Strings: Understanding Search Intent with Better Recall ↩︎
Yelp/nrtsearch: A high performance gRPC server on top of Apache Lucene ↩︎
https://blog.roblox.com/2020/05/scaled-bert-serve-1-billion-daily-requests-cpus/ ãç¥ããªãã£ãã®ã§åŸããèªããªã¹ãã«çªã£èŸŒãã ã ã²ãŒã äŒç€Ÿã® Roblox ããããªã«æ©æ¢°åŠç¿ã«åãå ¥ããŠãããšã¯ç¥ããªãã£ã…ãé¢çœã ↩︎
@metalunk ããã« Twitter ã§å£°ãããããšãããããã§ã https://twitter.com/metalunk ↩︎
See Also
- Search Engineering Newsletter vol.05
- Search Engineering Newsletter vol.04
- Search Engineering Newsletter vol.03
- Search Engineering Newsletter vol.02
- Search Engineering Newsletter vol.01